Socially Shared Planification in Team Based Learning

Simon LECUYER—CHARDEVEL
Supervisors Isabelle Girault and Christian Hoffmann
Laboratoire d'Informatique de Grenoble - MeTAH
PC2 PILOT – 04 February 2025

Context

Problem and Project Based Learning in higher educations

- 1st common year of STEM: "Design of belay glasses for climbing" (team of 6, 4 weeks duration)
- 2nd year preparing engineering school: "Design a solar panel able to follow sun trajectory" (team of 4 3 months duration)
- 3rd year civil engineering: "Conduct a regulation study to build a school" (team of 4 3 weeks duration)

Context

Project Based learning

a pedagogy in which students are given an **ill-structured task** and which is typically comprised of six key features: a focus question, learning goals, engagement in scientific practices, **collaboration**, **scaffolding with learning technologies**, and creation of tangible products (Krajcik & Shin, 2014)

A research field: Computer Supported Collaborative Learning (CSCL)

Context

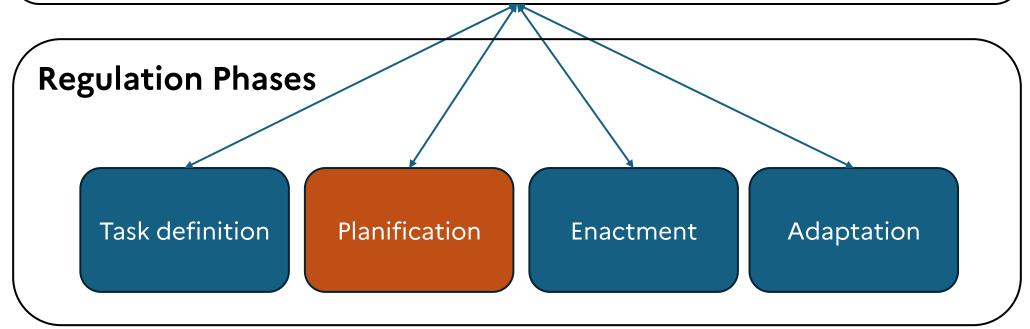
Typical issues to adress

- Dysfunctional group-work
- Students tends to get away from collaborative interactions
- Unequally benefit to all student's (Cohen & Lotan, 2014)
- Few direct and explicit support (Dignat & Büttner, 2018)

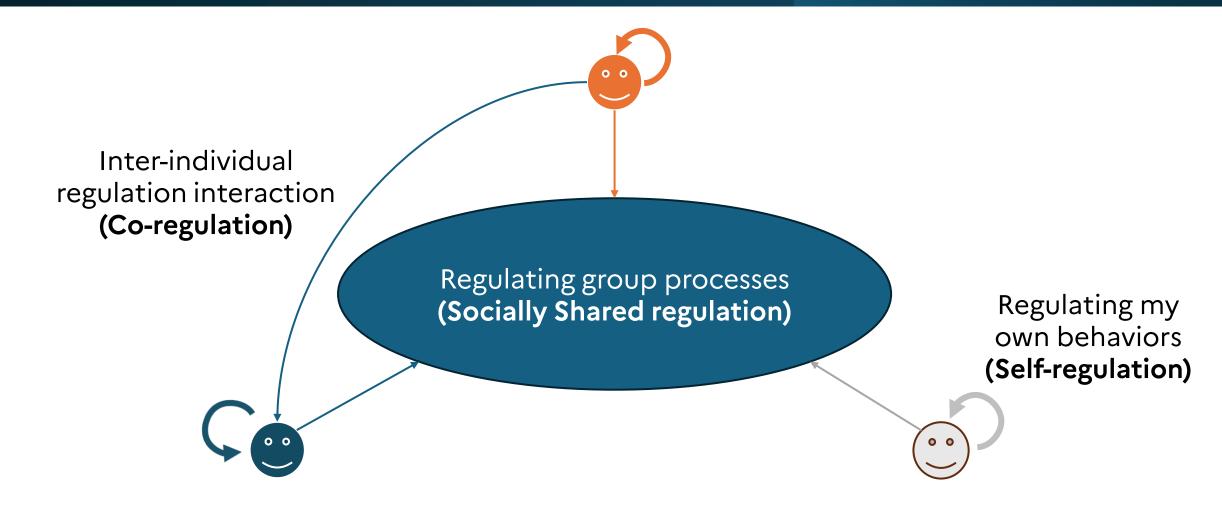
Conceptual framework

Learning regulation

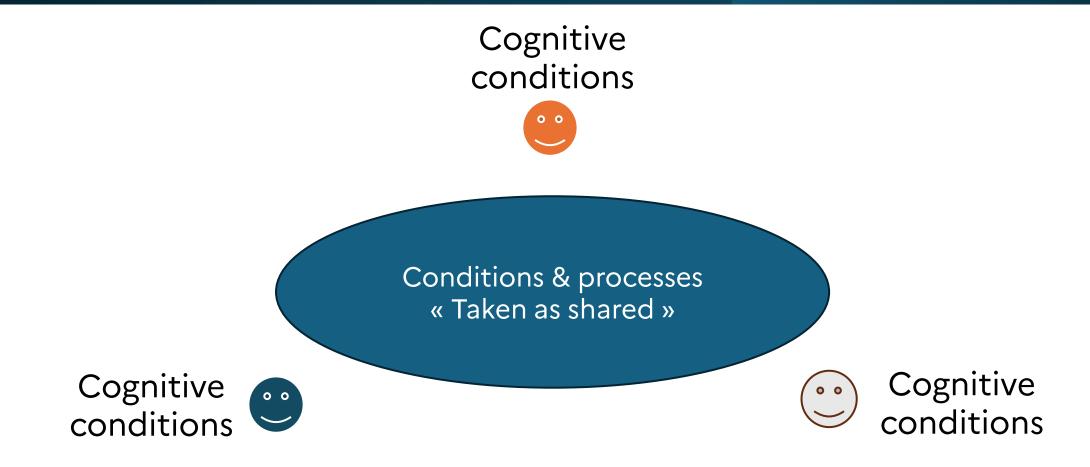
The active and conscious pursuit of a defined learning goal through planning, achieving, monitoring, controlling and reflecting on internal [...] and external [...] factors before, during and after learning (cited in Berger & Cartier, 2011)


- >Top-Down regulation : from task definition
- > Bottom-Up regulation : from task enactment

Interest:


- Self-regulated students tends to benefit more from TEL (Greene et Azevedo, 2011)
- Regulated groups tends to benefit more from CL (Jarvela et al, 2011)

Conceptual framework – COPES Architecture (Winne & Hadwin, 1998)


Cognitive conditions: What students know and believe about the learning task, their environnement and themselves

Conceptual framework Collective Regulation

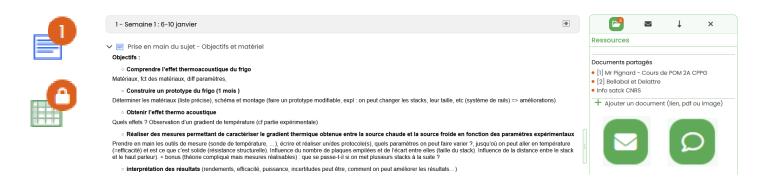
Conceptual framework – Collective Regulation

Lab NBook (d'Ham et al., 2019)

- Online learning experience platform (LXP)
 - Used by 4500+ / year
 - In real secondary and higher education context
- Teaching and learning experimental sciences
- Developped and hosted in Grenoble
 - Open source and data mastery
- Our choice to implement and test
 - Learning design principles
 - Tools to support learning regulation in PBL

Collaborative features

Collaborative support:


- Shared writing space
- Comments
- Instant messages
- Edition awareness
- Enactment phase already supported

Teacher orchestration:

- Group management
- Learning Analytics Dashboard
- Annotations

Identified gaps:

- Shared task definition
- Collective planning

PhD Research questions

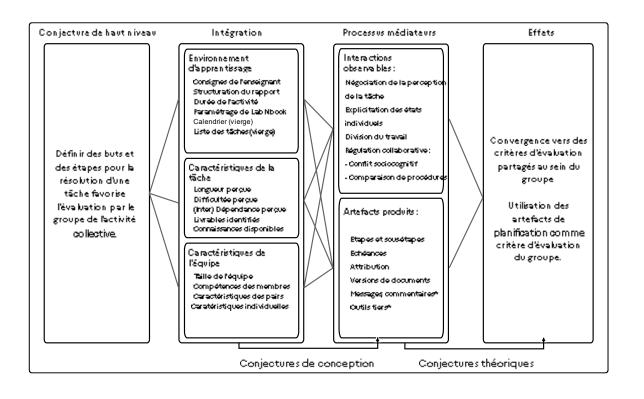
- What mechanisms influence learners' individual and group activity planning and their adaptation?
- What learning design principles support the definition of goals and the planning of learning activity in CSCL?
- How do learners use the tools available on learning platforms to plan their individual and collective activity?

Expected contributions to PILOT

Axis 1: Understanding current and future forms of long-term collaboration

C1 – Use case in CSCL

Axis 3: Conceptual frameworks for longterm collaboration


- C2 Collective Planning model for shared regulation
- C3 CSCL Design principles

Design Based Research (Wang & Hannafin, 2005; Sanchez & Monod Ansaldi, 2015)

		1 st design phase	1st assessment phase			
	Analysis	Design	Developpment	Implementation	Assesment	
Studies	Study 1 : Interview survey	Study 2 : Utility assessment	Study 3 : Usability assessment		Study 4 : Case study	
Results	Planification factors model Conjecture Map	Low fidelity prototypes	High fidelity prototypes	Adapted learning situation	1 st design principles 1 st planification model	
		Learners (n=2)	Learners (n=14)			
Stakeholders	Learners (n=14)	LabNbook Designers	LabNbook Designers	Teachers (n=2)	Teachers (n=2)	
		LabNbook Developpers	LabNbook Developpers	LabNbook Developpers	Learners (n=108)	
Progress	Done				In progress	

Contribution 1: Use case

- Characteristics of learning environment
- Observable collaborative regulation interactions
- Linking interactions to outcomes (learning variables)

Contribution 1: Study cases

	1 st design phase			1 st assessment phase		
	Analysis	Design	Developpment	Implementation	Assesment	
Studies	Study 1 : Interview survey	Study 2 : Utility assessment	Study 3 : Usability assessment		Study 4 : Case study	
Results	Planification factors model Conjecture Map	Low fidelity prototypes	High fidelity prototypes	Adapted learning situation	1 st design principles 1 st planification model	
		Learners (n=2)	Learners (n=14)			
Stakeholders	Learners (n=14)	LabNbook Designers	LabNbook Designers	Teachers (n=2)	Teachers (n=2)	
		LabNbook Developpers	LabNbook Developpers	LabNbook Developpers	Learners (n=108)	
Progress	Done				In progress	

Contribution 2 : Collective Planning model for Socially Shared Regulation

Environment conditions

Instructions
Scaffolds
Time allowed
Technological affordances

Task conditions

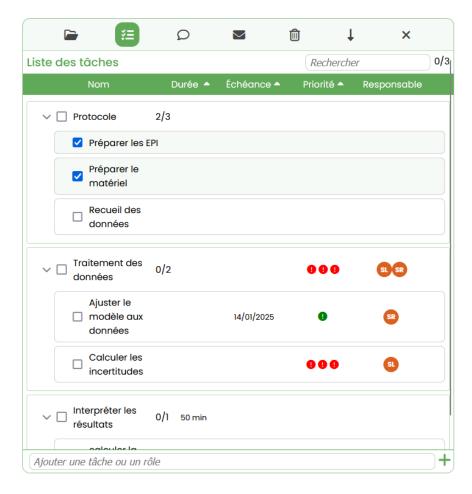
Lenght
Difficulty
Dependances

Group conditions

Size
Others perceptions
Self perceptions
Individual constraints

Contribution 2: Collective Planning model for SSRL

	1 st design phase			1 st assessment phase		
	Analysis	Design	Developpment	Implementation	Assesment	
Studies	Study 1 : Interview survey	Study 2 : Utility assessment	Study 3 : Usability assessment		Study 4 : Case study	
Results	Planification factors model Conjecture Map	Low fidelity prototypes	High fidelity prototypes	Adapted learning situation	1 st design principles 1 st planification model	
		Learners (n=2)	Learners (n=14)			
Stakeholders	Learners (n=14)	LabNbook Designers	LabNbook Designers	Teachers (n=2)	Teachers (n=2)	
		LabNbook Developpers	LabNbook Developpers	LabNbook Developpers	Learners (n=108)	
Progress	Done				In progress	


Contribution 3: CSCL Design principles

Now:

- Shared tasks for co and socially shared regulation
- Individual tasks for self-regulated learning
- Interfaced with monitoring interfaces (calendar)

Next: What kind of teachers' guidance?

Goal: Formulation of guidelines for using results and design principles in similar teaching situations.

Contribution 3: Design principles

	1 st design phase			1st assessment phase		
	Analysis	Design	Developpment	Implementation	Assesment	
Studies	Study 1 : Interview survey	Study 2 : Utility assessment	Study 3 : Usability assessment		Study 4 : Case study	
Results	Planification factors model	Low fidelity prototypes	High fidelity prototypes	Adapted learning situation	1 st design principles 1 st planification model	
	Conjecture Map	1 71	, 3,			
Stakeholders	Learners (n=14)	Learners (n=2)	Learners (n=14)			
		LabNbook Designers	LabNbook Designers	Teachers (n=2)	Teachers (n=2)	
		LabNbook Developpers	LabNbook Developpers	LabNbook Developpers	Learners (n=108)	
Progress	Done				In progress	

Conclusions

- 3 contributions to PC2 PILOT
 - Focusing on use case and collaborative practices
- Case studies currently in progress
 - January May
 - May June
 - September December
- Look out for next results!

Thank you for your attention

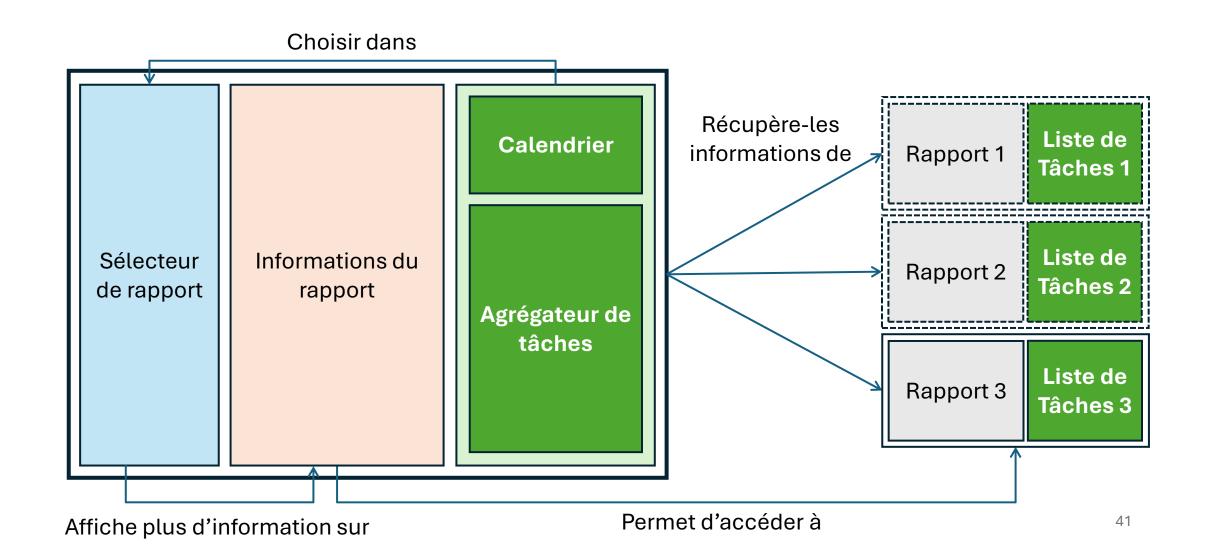
Bibliographie

- Krajcik, Joseph & Shin, Namsoo. Project-based learning. (2014). 10.1017/CBO9781139519526.018.
- Dignath, C., Büttner, G.: Teachers' direct and indirect promotion of self-regulated learning in primary and secondary school mathematics classes insights from video-based classroom observations and teacher interviews. Metacognition Learning. 13, 127–157 (2018). https://doi.org/10.1007/s11409-018-9181-x.
- Cohen EG, Lotan RA. Designing groupwork: strategies for the heterogeneous classroom. Third. New York: Teachers College Press; 2014
- Berger, J.-L., Cartier, S.C.: Introduction. In: L'apprentissage autorégulé. pp. 15–19. deboeck supérieur (2023).
- Greene, J.A., Moos, D.C., Azevedo, R.: Self-regulation of learning with computer-based learning environments. New Drctns for Teach & Learn. 2011, 107–115 (2011). https://doi.org/10.1002/tl.449.
- Winne, P.H., Hadwin, A.F.: Studying as self-regulated learning. In: Metacognition in educational theory and practice. pp. 277–304. Lawrence Erlbaum Associates Publishers, Mahwah, NJ, US (1998).
- Pressley, M., & Afflerbach, P. Verbal protocols of reading: The nature of constructively responsive reading. Hillsdale, NJ: Erlbaum, (1995).
- D'Ham, C., Girault, I., Marzin, P.: LabNbook, plateforme numérique support des pédagogies actives et collaboratives en sciences expérimentales. In: 9ème Conférence sur les Environnements Informatiques pour l'Apprentissage Humain. , Paris (2019).
- Wang, F., Hannafin, M.J.: Design-Based Research and Technology-Enhanced Learning Environments. Educational Technology Research and Development. 53, 5–23 (2005).
- Sanchez, É., Monod-Ansaldi, R.: Recherche collaborative orientée par la conception: Un paradigme méthodologique pour prendre en compte la complexité des situations d'enseignement-apprentissage. educationdidactique. 73–94 (2015). https://doi.org/10.4000/educationdidactique.2288.

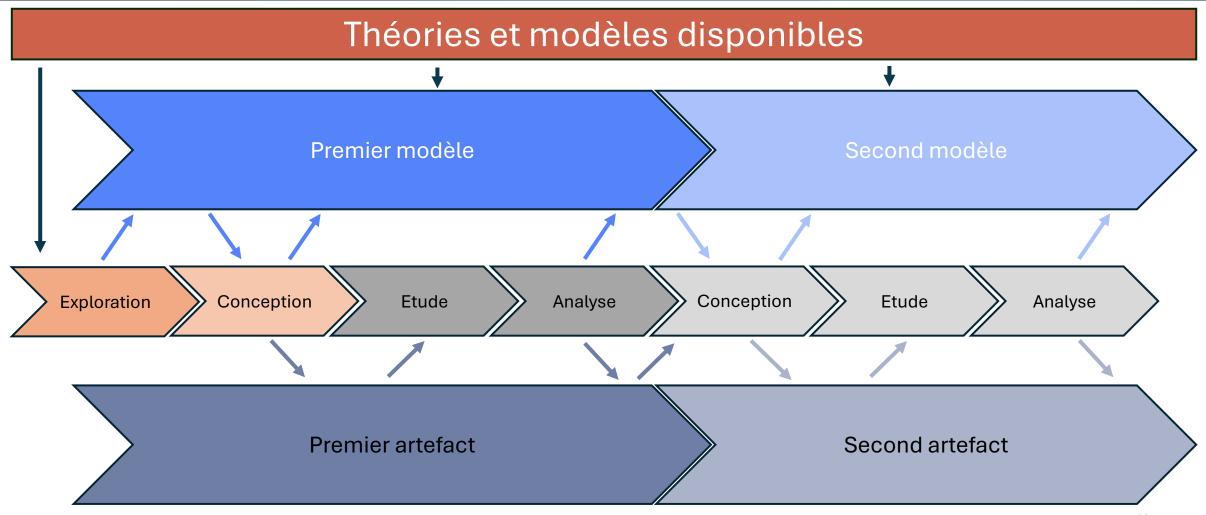
A mixed methods case study

Measures	S1	S2 – S9	S10	S11	S12	May
Observation	X			X	X	
Questionnaire Survey	X			x		
Log Data	X	X	X	x	х	
Students interview						X
Teachers interview						X
Grades						X

QR2 - Quels processus influencent la planification de l'activité d'apprentissage en équipe ?


Choix de critères de réussites :

- Orientation de performance principalement évoquée
- Orientation de maitrise si la perception des caractéristiques de la tâche le permet
 - Pour soi (E4)
 - Pour les membres de l'équipe
- La sélection des stratégies de planification :
 - Rappel de stratégies naïves, connues ou suggérées par l'enseignant
 - Sélection selon le temps et les ressources disponibles (E13 E4)
- **Distribution** de la planification dans le temps
 - Selon la priorisation accordée à la tâche à un instant T (E3)
 - Selon des stratégies de l'apprenant (E2)


QR1 - Quels comportements de planification rapportent les étudiant·e·s dans des activités d'apprentissage en équipe ?

- Planification collective largement orienté vers l'optimisation du temps de travail
 - Attribution des tâches en parallèle
 - Pouvant être attribuée à des groupes
 - Semble influencé par le type de tâche demandé
 - Utilisation de script de collaboration (E13; E14)
 - Même si adapté par les apprenants
- Ordonnancement selon les caractéristiques de la tâche
 - Facilité perçue
 - Dépendances (E2)
- Modalité d'attributions des tâches variables (E3)
 - Dépend de l'orientation des buts pour la tâche (E4)
- Planification « rythmée » par les temps d'enseignement en présentiel (E5)
- > La planification prévue diffère de la performance réalisée

Relations entre les outils

Recherche Orientée par la Conception (adapté de Sanchez, 2022)

