

Devlopment of a methodology based on Digital mock up towards improving Digital Twin Concept for complex system: Design, migration and maintenance

PEPR ENSEMBLE - PC2 PILOT

Clarissa GREGORY

Supervised by: Vincent Chapurlat et Souad Rabah

Email: clarissa.gregory@mines-ales.fr

Tel. 06 31 10 80 06

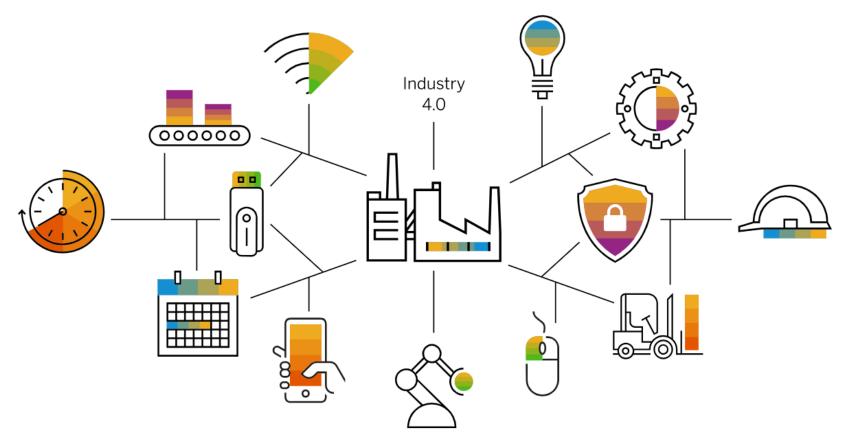
Who am I?

Clarissa Gregory, 2nd PhD student

Supervisors
Vincent CHAPURLAT
Souad RABAH-CHANIOUR

PhD Student since 2nd October 2023

- Curriculum:
- 2017-2019 : Prépa PTSI-PT in Voiron (38)
- 2019-2023 : IMT Mines Alès, Mecatronic and Industrial science department
- 2021-2023 : Double degree program Keio University Tokyo
- 2023: PhD student in Laboratoty for the science of Risks, CERIS team ISOAR
- Development of a methodology based on Digital mock up towards improving Digital Twin Concept for complex systems: Design, migration and maintenance
- PePR eNSEMBLE PC2 PILOT since December 2024 as « Accompagnement »

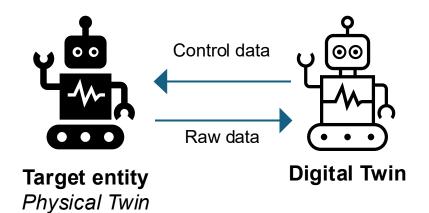


Agenda

- 1. Industry 4.0 and key technologies
- 2. Introduction, Motivation and Thesis Problem Statement
- 3. Theoretical background State of the art in literature
- 4. Problem statement
- 5. Proposed approach Federated interoperability
- 6. Conclusion PhD within PC2 PILOT

1. Industry 4.0 and key technologies

Industry 4.0


Traditional industry combined with **internet technologies** and apparition of cyberphysical systems.

(Ramdasi et al, 2018)

Source: https://www.sap.com/france/products/scm/industry-4-0/what-is-industry-4-0.html

2. Introduction, motivation and thesis problem statement

Digital Twin (DT) ⇔ Virtual and accurate image of a target entity to answer a use with an accurate synchronisation rate (ISO 30173)

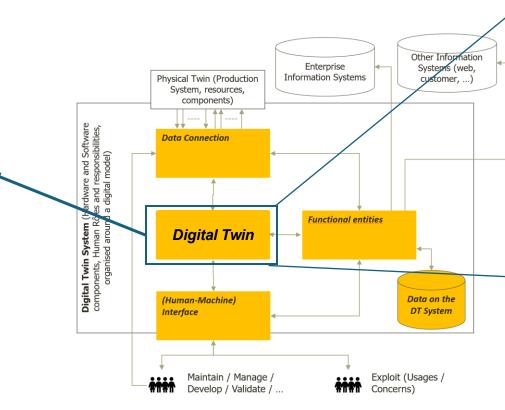
DT usages: control, optimisation, prediction, maintenance and training

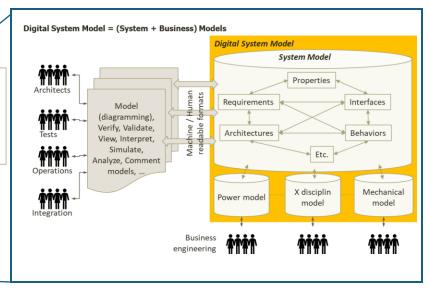
Fundamental technology of Industry 4.0 (Gartner 2023)

Complex systems = Complex representations Recent standards [1], [2]

Engineering processes are time consuming and expensive

Research of a method for Digital Twin engineering based on Systems
Engineering theory


3.1 The Digital Twin

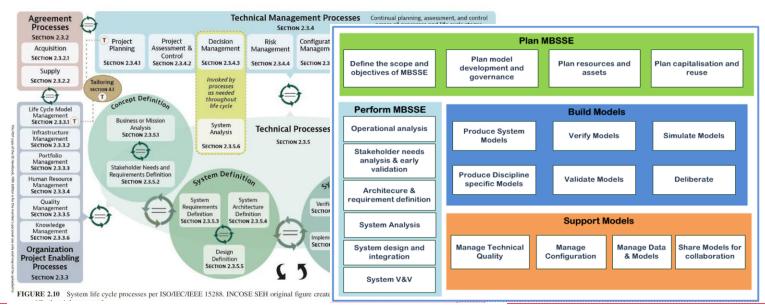

2 ISO standards provide a Digital Twin definition and engineering framework elements

-ISO 23247:2021 (manufacturing)

-ISO 30173:2023

Digital Twin⇔
Virtual and
accurate image
of a specified
system answering
a specified use

Digital Twin System ISO30173:2023

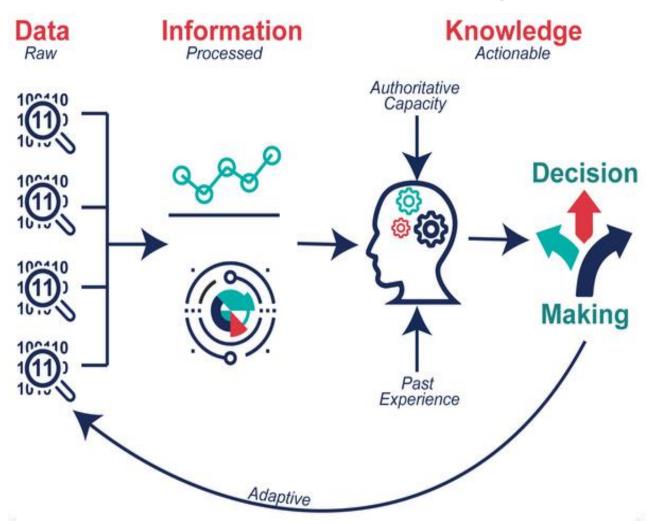

3.2 Systems engineering and model-based systems and software engineering

System: Arrangement of parts or elements that together exhibit a stated behaviour or meaning that the individual constituents do not. (ISO15288-2023 – Systems engineering)

Systems Engineering: Transdisciplinary and integrative approach to enable the successful realization, use and retirement of engineered systems using principles and concepts and scientific, technological and management methods. (ISO 15288:2023 – Systems engineering)

Model Based Systems and Software Engineering: Formalised application of modeling to support

systems and software engineering. (ISO 24641 – 2023)


- Design methodology suitable for complex problem solving associated with numerous requirements
- Modeling: improved collaboration and information sharing
- ✓ Numerous stakeholders

Source: INCOSE Handbook, 5th edition, INCOSE

École Mines-Télécom

Source: ISO 24641:2023 : Model-Based Systems and Software Engineering

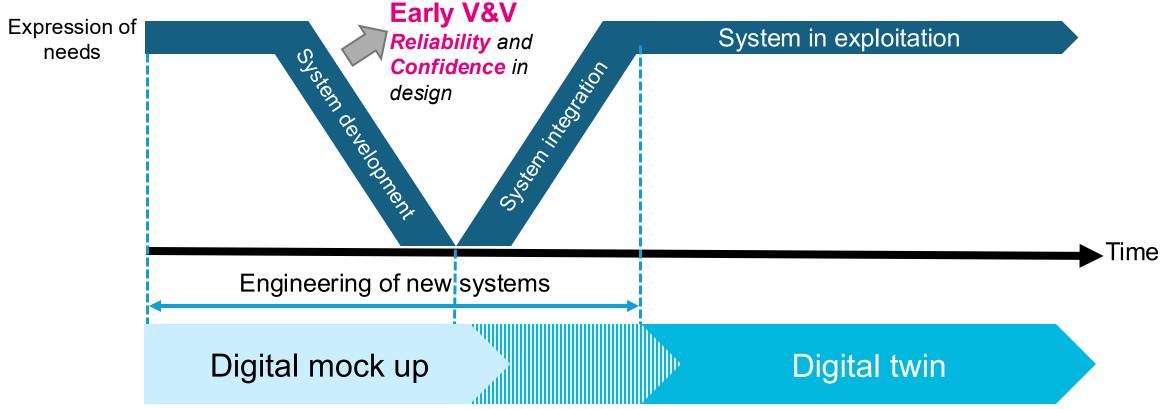
3.3 Data, information and knowledge

Context Industry 4.0 (El Alaoui et al, 2022)

Item: any digital elements involved in the description and caracterisation of a system: pattern, operation data...

Data: item without context.

Information: contextualized item, with, resulting of a treatment or not.


Knowledge: contextualized and interpreted item use for decision making and action.

Source: https://internetofwater.org/valuing-data/what-are-data-information-and-knowledge/

3.4 The Digital Mock-up and the Digital Thread

Digital Thread = Gathering items across system life cycle (AIAA, 2023) → Opportunity for Digital Twin Engineering (Semeraro et al, 2021)

Problematic: reuse of items generated during system life cycle for Digital Twins Systems engineering (Semeraro et al, 2021), (Liu et al, 2023), (Zhang et al, 2022), (Jiang et al, 2023)

4. Problem statement

Digital Thread

Digital mock up

For Gathers and potentially federates items generated during the engineering of the target entity (Chapurlat and Nastov, 2020)

Individual models: partial representation of the system under a parital and chosen point of view to support engineering choices

Digital twin

Need of accurate, federated and connected representation of the target entity

Need of confidence in the model Early V&V process Need of interoperable models to build a representation fitted to a use

Models' federation

How to federate heterogenous models?

4. Problem statement

Complex Systems Design

Numerous stakeholders

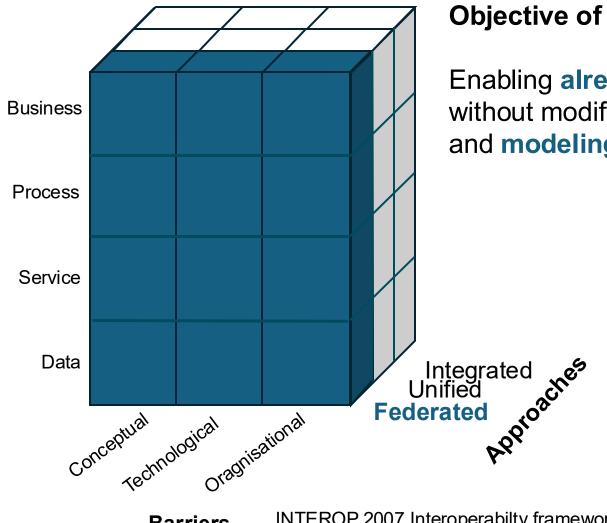
Siloed working practices

Lack of interoperability

Reduced collaboration

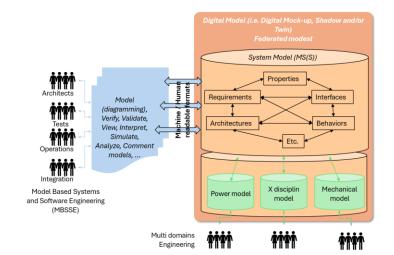


Numerous requirements



Numerous design items

Proposition to the PC2 PILOT of methodological approaches to tackle interoperability and collaboration problems during engineering processes

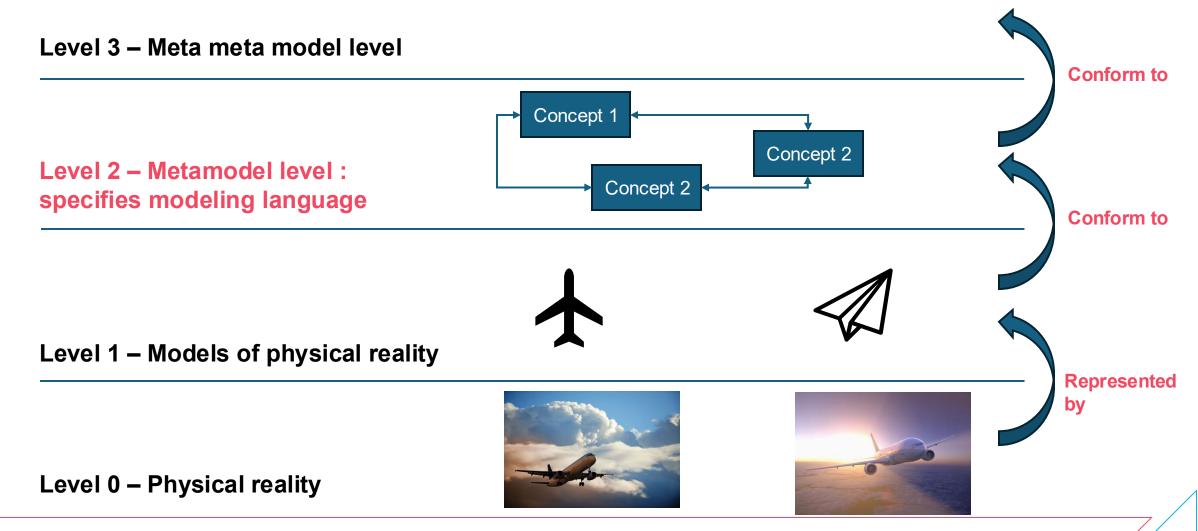


5.1 An interoperability framework

Objective of model federation in this PhD research

Enabling already existing distinct models to work together without modifying them, i. e. without sharing languages and modeling tools

Barriers


INTEROP 2007 Interoperabilty framework

Concerns

5.3 Metamodel - A definition

Modeling Pyramid according to Object Management Group (OMG)

5.2 State of the art

Metamodeling

Taylored modeling languages

Ex: xviDSML, Nastov, Chapurlat et al 2016

Model encapsulation

Cosimulation of models, managing only inputs and outputs of model

Ex: Functional Mock-up Interface FMI-FMU standards
HLA (High Level architecture), El
Kassis et al. 2024

Federated interoperabilty

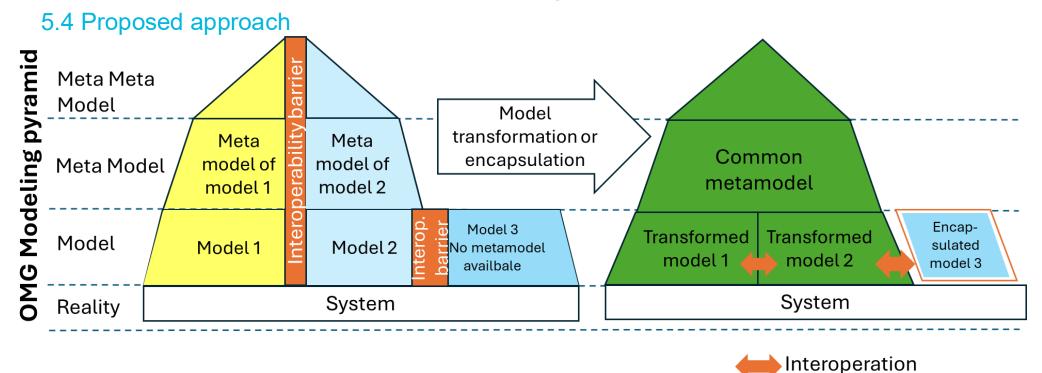
Search of universal modeling langage

Ex: Universal Entreprise Modeling Language (UEML)

Formal approaches

Based on mathematically model transformation

Ex: Formal model transformation for interoperability purposes


Use of Hypergraphes, Labreche et al, 2023

Moretti, et al 2023
Model transformation **not**

necessarilly for interoperability purposes

Use of higraphs, Aboutaleb et al, 2015 Wymore, 1996

Metamodel available:

Use of model transformation techniques

- ✓ General and formal approach
- × Requires metamodel
- Modification of model properties

Metamodel not available:

Use of standards such as FMI/FMU (cosimulation) or HLA (federation)

- Confidentiality
- × Black box

Research of formal approaches based on graphs theory

6. Conclusion – PhD within PC2 PILOT

Objectives of the PhD Project

Digital twin engineering
Refined and synchronised
representation

Research for methodologies for federated interoperability

Preservation of stakeholder's practices

Research for formal approaches to improve interoperability withing the MBSE framework

Thank you for your attention

Research work:

Paper presented during 18th IFAC Symposium on Information Control Problems in Manufacturing, 28th – 30th August 2024 Model Based Systems Engineering applied to Digital Twin engineering: Why and How to ? (C. Gregory, R. Mbolamannamalala, S. Rabah and V. Chapurlat, 2024)

Congrès annuel de l'AFIS 2025, poster pour le séminaire doctoral : Digital Thread based federated interoperability approach for DT engineering, C. Gregory, S. Rabah, V. Chapurlat

Clarissa GREGORY

Email: clarissa.gregory@mines-ales.fr

Tel. 06 31 10 80 06

Logo Partenaire

References

- P. Ramdasi, P. Ramdasi, "Industry 4.0: Opportunity for analytics", 2018.
- ISO 23247. 2021, "ISO 23247:2021 Automation Systems and Integration Digital Twin Framework for Manufacturing"." International Organization for Standardization, Geneva, Switzerland, 2021.
- ISO/IEC 30173:2023, "ISO/IEC 301733:2023 Digital twin Concepts and terminology." International Organisation for Standardization, Geneva, Switzerland, 2023.
- ISO/IEC/IEEE 15288.2015, "ISO/IEC/IEEE 15288.2023 Systems and software engineering System lifecycle processes." International Organization for Standardization, Geneva, Switzerland, 2023.
 - INCOSE, System Engineering Handbook, 5th edition. 2023.
- ISO/IEC/IEEE 24641:2023, "ISO/IEC/IEEE 24641 Systems and Softwares engineering Methods and tools for model-based systems and softwares engineering." International Organization for Standardization, Geneva, Switzerland, 2023.
- M. El Alaoui, S. Rabah, V. Chapurlat, V. Richet, and R. Plana, "An original Data, Information and Knowledge management approach for model-based engineering projects."
- AIAA Digital Engineering Integration Committee, "DIGITAL THREAD: DEFINITION, VALUE, AND REFERENCE MODEL," 2023.
- C. Semeraro, M. Lezoche, H. Panetto, and M. Dassisti, "Digital twin paradigm: A systematic literature review," *Comput Ind*, vol. 130, Sep. 2021, doi: 10.1016/j.compind.2021.103469.
- S. Liu, Y. Lu, X. Shen, and J. Bao, "A digital thread-driven distributed collaboration mechanism between digital twin manufacturing units," J Manuf Syst, vol. 68, pp. 145–159, Jun. 2023, doi: 10.1016/j.jmsy.2023.02.014.
- Q. Zhang, S. Zheng, C. Yu, Q. Wang, and Y. Ke, "Digital thread-based modeling of digital twin framework for the aircraft assembly system," J Manuf Syst, vol. 65, pp. 406–420, Oct. 2022, doi: 10.1016/j.jmsy.2022.10.004.
- L. Jiang, S. Su, X. Pei, C. Chu, Y. Yuan, and K. Wang, "Product-part level digital twin modeling method for digital thread framework," Comput Ind Eng, vol. 179, May 2023, doi: 10.1016/j.cie.2023.109168.

References

- [12] Podskarbi, M., & Knezevic, D. J. (2020). OTC-30553-MS Digital Twin for Operations-Present Applications and Future Digital Thread.
- [13] Guo, J., Zhao, N., Sun, L., & Zhang, S. (2019). Modular based flexible digital twin for factory design. Journal of Ambient Intelligence and Humanized Computing, 10(3), 1189–1200. https://doi.org/10.1007/s12652-018-0953-6
- [14] Wang, P., & Luo, M. (2021). A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing. Journal of Manufacturing Systems, 58, 16−32.
- [15] M. Sommer, J. Stjepandić, S. Stobrawa, and M. von soden, "Automatic generation of digital twin based on scanning and object recognition," in Advances in Transdisciplinary Engineering, IOS Press BV, Oct. 2019, pp. 645−654. doi: 10.3233/ATDE190174.
- [16] Hedberg, T. D., Sharp, M. E., Maw, T. M. M., Helu, M. M., Rahman, M. M., Jadhav, S., Whicker, J. J., & Barnard Feeney, A. (2022). Defining requirements for integrating information between design, manufacturing, and inspection. International Journal of Production Research, 60(11), 3339–3359.
- [17] Labreche, M. (2023). Implémentation d'une interopérabilité fédérée supportée par la transformation automatisée à la volée de modèles de données hétérogènes : application aux problèmes d'appariement des schémas. https://theses.hal.science/tel-04224022